Answer for Q1

This problem is similar to *The Product Mix Problem* discussed in class, therefore we can solve the problem use the same approach:

Step 1. The decision variables

Let us denote the monthly production of Type A by x_1 tons, of Type B by x_2 tons, and of Type C by x_3 tons, as decision variables. Here, x_1 , x_2 and x_3 are real numbers, which must be positive.

Step 2. The objective function

We would like to maximize our profit. Based on table, our profit per month = $210x_1 + 400x_2 + 600x_3$. Thus the objective function is to maximize the value of the function, $z = 210x_1 + 400x_2 + 600x_3$.

Step 3. The constraints

Since the supply of each raw material is limited, we need one constraint equation for each, as follows:

Pulp 1:
$$1.9x_2 + 2.4x_3 \le 1500$$

Pulp 2: $0.5x_2 \le 800$
Pulp 3: $1.3x_1 + 2.1x_2 + 0.8x_3 \le 500$
Pulp 4: $2.5x_1 \le 2000$

Step 4. Complete the formulation

The problem is therefore completely specified as follows:

maximize
$$z = 210x_1 + 400x_2 + 600x_3$$
 subject to

$$\begin{array}{rcl}
1.9x_2 + 2.4x_3 & \leq 1500 \\
0.5x_2 & \leq 800 \\
1.3x_1 + 2.1x_2 + 0.8x_3 & \leq 500 \\
2.5x_1 & \leq 2000 \\
x_1, x_2 \text{ and } x_3 \geq 0
\end{array}$$

Answer for Q2

Let us rewrite the constraint for the available amount of potash as: $x + y \le c$. Using the graphical solution from the notes, we confirm that the optimum solution is at the corner point determined by this constraint and the constraint on Urea, namely: $2x + y \le 1500$. Since these two define the corner point, we can use the boundary of these two constraints to find the coordinate of the corner point, namely we can use the *equations*: x + y = c, and 2x + y = 1500. Solve:

$$2x + y = 1500$$
 --- (1)
 $x + y = c$ --- (2)
(1) - (2) gives: $x = 1500 - c$ --- (3)
Substituting x from (3) into (2) gives: $y = 2c - 1500$ --- (4)

Plug x and y from (3), (4) into the expression for the objective, z = 15x + 10y, to get: z = 15(1500 - c) + 10(2c - 1500) = 7500 + 5c --- (5)

The derivative dz/dc gives the rate of change of profit for unit rate of change in the amount of potash; differentiating (5), we get:

dz/dc = 5. In other words, 1 unit change in potash will change the profit by \$5.

ii) From the graphical solution, we can see that there is a finite slack in the amount of rock phosphate used (200 units of rock phosphate). Therefore a unit change in the availability of this resource will not affect the location of the corner point defining the optimum. Thus it has no impact in profit.

Answer for Q3

	А	В	С	D	Е	F	G	Н	I	J	К		
1	Variables:												
2		Type A	0		a 1	P .					nl wi		
3		Type B	0		Solver	Solver Parameters							
4		Type C	625		_	Set Target Cell: <u>\$C</u> \$6 <u>₹</u> . <u>Solve</u>							
5						Equal To:							
6	Objective:	max	375000			By Changing Cells:							
7					J\$C\$2	2:\$C\$4			<u>G</u> uess				
8	Constraints:	Pulp 1	1500	1500	-S <u>u</u> bje	-Subject to the Constraints: Options							
9		Pulp 2	0	800	\$C\$1	10 <= \$D\$10 11 <= \$D\$11		4	<u>A</u> dd				
10		Pulp 3	500	500	\$C\$1	12 >= \$D\$12			Chang	e			
11		Pulp 4	0	2000	\$C\$1	13 >= \$D\$13 14 >= \$D\$14					set All		
12		non-negativity	0	0	\$C\$8	3 <= \$D\$8			Delett		Help		
13		non-negativity	0	0									
14		non-negativity	625	0									
15													