
21

3. The shortest route problem

This problem arises in many practical situations. An example is that we have a map and
need to find the shortest path from a given starting point to a given destination point. It is
useful for transportation companies to optimize their delivery routes, so as to minimize
delivery time/distance. The examples for this class of problems are obvious and the need
to solve this type of problem arises very frequently in many areas of engineering and
science. In typical problems, the nodes represent points, or cities, from which one can
travel to other points via roads. A road connecting two nodes is therefore an edge in the
graph. Typically, the weights of the edges are either the length of the path it represents, or
the cost of traveling on the path, or the time taken to travel on it, etc.

Example: I want to drive from UST to meet my friend, Mr. KS Li, at his hotel in Hung
Hom. A simplified map of the roads gives me several alternate routes, from which I must
find the shortest route.

4

7

2

2

4

4

3

3 3

ust

kt

ch

pe

hh

tko

6

1

tkw

4

7

2

2

4

4

3

3 3

ust

kt

ch

pe

hh

tko

6

1

tkw

Figure 21. Shortest path example

Of course, one can just list all possibilities in this simple example; we are interested in a
general method to solve all such problems.

The method we shall learn is called Dijkstra’s method (named after Professor Dijkstra, a
Dutch computer scientist).

Notations:
G(E, V) is a weighted, directed graph, such that each weight is a positive number. We
shall denote the start node as s. So we want to find the minimum total weight path from s
to some destination node, z, in G.

Dijkstra’s algorithm:
The algorithm uses a simple idea called relaxation.

22

Relaxation:
At each step of the method, we associate with each node v a number, d[v], which is the
upper bound on the shortest path distance of node v from the source s.

Thus, in the beginning, we set d[s] = 0, and d[v] = f for all v ��V. Certainly the distance
of the start node from itself is zero; also, the distance of any other node from the start
node is less than ��

Now assume that there is an edge, (s, u), with cost 10. Then d[u] can be decreased from f
to 10. This is because of the following: we can reach from s to u in two ways:
(i) directly; s Æ u in which case it will cost us 10 units to traverse this edge.
(ii) via other routes of the form: s Æ vk Æ … Æ vrÆ u. In this case, either the total cost
of the edges on these routes is less than 10 (say the sum of weights of these edges is 6),
then certainly we can reach from s to u with cost 6 < 10; on the other hand, if the total
weights of these edges add up to, say 14; then it is better if we just go directly from s Æ u
with weight 10.

This idea can be extended to any vertex v:
Assume there is an edge (u, v) � E, with weight w(u, v). Assume d[u] and d[v] are the
currently known upper bounds on u and v respectively.
Then we can relax the upper bound on v as follows:
 if d[v] > d[u] + w(u, v), then set d[v] = d[u] + w(u, v); otherwise, d[v] is
unchanged.

Figure 22 shows examples of the process of relaxation, where the current known upper
bound for each node is the number written inside the node.

4x y
10 18

4x y
10 14

Relax(x, y)

4x y
10 12

4x y
10 12

Relax(x, y)

(a) Before relaxing, we can reach node y at
a total cost = 18. Since d[y] > d[x] + w(x,y),
it is better to reach y via x instead, with a
total cost no more than d[x]+w(x, y) = 14.
Since x is the new immediate predecessor
of y, we denote it in cyan color.

(b) d[y] < d[x] + w(x,y). We could reach
y by some other path at a cost of 12. It is
disadvantageous to go to y via x (since this
route will cost us 14. Thus x is not an
immediate predecessor of y, and edge (x, y)
is shown in black color.

4x y
10 18

4x y
10 14

Relax(x, y)

4x y
10 12

4x y
10 12

Relax(x, y)

(a) Before relaxing, we can reach node y at
a total cost = 18. Since d[y] > d[x] + w(x,y),
it is better to reach y via x instead, with a
total cost no more than d[x]+w(x, y) = 14.
Since x is the new immediate predecessor
of y, we denote it in cyan color.

(b) d[y] < d[x] + w(x,y). We could reach
y by some other path at a cost of 12. It is
disadvantageous to go to y via x (since this
route will cost us 14. Thus x is not an
immediate predecessor of y, and edge (x, y)
is shown in black color.

4x y
10 18

4x y
10 14

Relax(x, y)

4x y
10 12

4x y
10 12

Relax(x, y)

(a) Before relaxing, we can reach node y at
a total cost = 18. Since d[y] > d[x] + w(x,y),
it is better to reach y via x instead, with a
total cost no more than d[x]+w(x, y) = 14.
Since x is the new immediate predecessor
of y, we denote it in cyan color.

(b) d[y] < d[x] + w(x,y). We could reach
y by some other path at a cost of 12. It is
disadvantageous to go to y via x (since this
route will cost us 14. Thus x is not an
immediate predecessor of y, and edge (x, y)
is shown in black color.

Figure 22. Examples of relaxation

23

When we do a relaxation, we also will keep track of the edge that caused a decrease in
the upper bound for v; this is the immediate predecessor of v in the (current) shortest
known path from s to v, and we denote it as S[v].

We start with two lists:
V = set of all vertices
S = set of vertices, ui, for which d[ui] = final shortest path distance from s to ui

Initially, S is empty. At any stage, consider all the nodes ui, for which the shortest
distance from s has not yet been determined. We pick the one with the least d[ui]. For
this vertex, d[ui] must be the final shortest path distance from source s (we shall prove
this later) – so we relax this node, and add it to S.

Since at each step, we select the node of S that has the least d[ui], this step is a greedy
selection rule. The entire method, therefore, can be written as follows.

INPUTS: a graph, G(V, E), and a start node, s.

Step 1. Set d[vi] = f for each vertex

Step 2. For the source, s, set d[s] = 0;

Step 3. Make two lists: S = {}; Q = V

Step 4. Find the node, u, in Q with minimum d[u]

Step 5. Remove u from Q, and add u to S;

Step 6. For each edge (u, v) going out from u

 if (d[v] > d[u] + w(u, v)) then

 Set d[v] = d[u] + w(u, v), and

 Set u as the immediate predecessor of v

Step 7. If set Q still has more nodes, go to Step 4.

Step 8. Done !

At the end of the procedure, each node should have a finite number, d[u] that shows its

final, minimum distance from the source node s. Further, if we need to find the shortest

distance path, we just need to trace back the immediate predecessors from the destination

node back to the start node. Since each node has exactly one immediate predecessor, we

are guaranteed to get a unique path back to the source.

The following figures show how the method works for our example problem. In the

figures, I denote the nodes in the set S by cyan color. Likewise, each immediate

predecessor edge is marked in cyan color.

24

0

4

7

2

2

4

4

3

3 3

ust

kt

ch

pe

hh

tko

6

1

tkw

f
f f

f

f

f

0

4

7

2

2

4

4

3

3 3

ust

kt

ch

pe

hh

tko

6

1

tkw

f
f f

f

f

f

Figure 23. Dijkstra’s method: select the node with lowest d[u], and add it to S

0

4

7

2

2

4

4

3

3 3

ust

kt

ch

pe

hh

tko

6

1

tkw

6
f f

f

f

7

0

4

7

2

2

4

4

3

3 3

ust

kt

ch

pe

hh

tko

6

1

tkw

6
f f

f

f

7

Figure 24. Dijkstra’s method: relax the node just added to set S

0

4

7

2

2

4

4

3

3 3

ust

kt

ch

pe

hh

tko

6

1

tkw

6
10 f

f

f

7

0

4

7

2

2

4

4

3

3 3

ust

kt

ch

pe

hh

tko

6

1

tkw

6
10 f

f

f

7

Figure 25. Set the immediate predecessors; select next node to add to S; relax it.

25

0

4

7

2

2

4

4

3

3 3

ust

kt

ch

pe

hh

tko

6

1

tkw

6
10 f

f

f

7

0

4

7

2

2

4

4

3

3 3

ust

kt

ch

pe

hh

tko

6

1

tkw

6
10 f

f

f

7

Figure 26. Set the immediate predecessor of node kt

0

4

7

2

2

4

4

3

3 3

ust

kt

ch

pe

hh

tko

6

1

tkw

6
9 f

10

11

7

0

4

7

2

2

4

4

3

3 3

ust

kt

ch

pe

hh

tko

6

1

tkw

6
9 f

10

11

7

Figure 27. Select next node to enter S, relax it

0

4

7

2

2

4

4

3

3 3

ust

kt

ch

pe

hh

tko

6

1

tkw

6
9 13

10

11

7

0

4

7

2

2

4

4

3

3 3

ust

kt

ch

pe

hh

tko

6

1

tkw

6
9 13

10

11

7

Figure 28. Notice that immediate predecessor of kt is changed when we relax ch

Select the next node to enter S, and relax it

26

0

4

7

2

2

4

4

3

3 3

ust

kt

ch

pe

hh

tko

6

1

tkw

6
9 13

10

11

7

0

4

7

2

2

4

4

3

3 3

ust

kt

ch

pe

hh

tko

6

1

tkw

6
9 13

10

11

7

Figure 29. Next node to enter S is pe; relaxing pe does not change d[hh], so immediate

predecessor of hh remains unchanged

0

4

7

2

2

4

4

3

3 3

ust

kt

ch

pe

hh

tko

6

1

tkw

6
9 12

10

11

7

0

4

7

2

2

4

4

3

3 3

ust

kt

ch

pe

hh

tko

6

1

tkw

6
9 12

10

11

7

Figure 30. Next node to enter S is tkw; relax tkw.

0

4

7

2

2

4

4

3

3 3

ust

kt

ch

pe

hh

tko

6

1

tkw

6
9 12

10

11

7

0

4

7

2

2

4

4

3

3 3

ust

kt

ch

pe

hh

tko

6

1

tkw

6
9 12

10

11

7

Figure 31. Set immediate predecessor of node hh; hh enters S; relax hh.

After we reach the state shown in Figure 31, Q is empty, so the method terminates. At
this stage, d[u] value of any node is its final shortest paths from ust. We can trace the

27

immediate predecessors of hh: hh Å tkw Å ch Å ust; this is the shortest path from ust to
hh in reverse.

Proof of correctness
The algorithm works mainly because to two ideas. We have already seen the proof of
correctness of the relaxation step. Now we prove that correctness of greedy selection.

A few properties of relaxation will be used:
(i) d[u] is non-increasing: We denote the upper bound on the distance of a node u from s
as d[u]. The value of d[u] can never increase due to relaxation (obvious from the
definition of relaxation).
(ii) d[u] cannot go below the shortest distance from s to u. If the graph is strongly
connected, then for each node u, there is a shortest distance from s to u. This is obvious,
since there are only a finite number of simple paths from s to u, and therefore one of them
must be the shortest. Denote the length of this shortest distance as d*[u]. Certainly, d[u]
can never be less than d*[u].

From properties (i) and (ii), we can conclude that once we have found the shortest path to
a node, the value, d[u], associated with it will never change.

Notice that in Dijkstra’s algorithm, the set S consists of exactly such nodes (whose

shortest path has been found). Thus all we need to show is that (a) when we select the

next node to enter the set S, it’s shortest path has indeed been found, and (b) after it

enters S, it’s shortest path cannot change.

At some intermediate stage, we have a set S such that for each node u in S, d[u] is the

shortest distance of the node from s. Assume that the next selected node, say node v, does

not have this property. Since our graph is connected, there must be a shortest path from s

to v (though we have not found it yet). There are two possibilities for this path: it may pg

through some node(s) that are still not in S, or it may only go through nodes in S before it

reaches v (see figure 32)

S S

s

v

s

v

y
. . .

. . .

p

m

. . .

(a) (b)

S S

s

v

s

v

y
. . .

. . .

p

m

. . .

S S

s

v

s

v

y
. . .

. . .

p

m

. . .

(a) (b)

Figure 32. Proof of correctness of Dijkstra’s method

28

In this first case (Figure 32a): since this is the shortest path from s to v, thus it must have
been the shortest path from s to y (some node not yet in S). But in that case, d[y] < d[u]
because the edges from y to v have positive weight, and greedy selection should have
selected y instead of v. So the shortest path from s to v must contain only nodes inside S.
But all of these nodes have already been relaxed, and therefore if any of them lead
directly to v, the corresponding relaxation must have already set d[v] to the value it can
get on the shortest path from s to v. Thus our assumption that v has not yet reached its
minimum path length must have been wrong.

We now complete the proof by induction: At the beginning, we add node s, with d[s]=0
to the set S. After that, each selection adds another node whose shortest path has been
determined (and will remain unchanged, due to property (ii)). Since each step adds one
node to S, and the graph only has finite number of nodes, so the method terminates after a
finite number of steps (since there are only a finite number of nodes in V). This
completes the proof.

Concluding remarks on Dijkstra’s algorithm

1. Notice that Dijkstra’s algorithm will work equally well for undirected graphs as for

directed graphs. If the original problem consists of undirected graphs, a simple way to

transform it to an equivalent, directed graph is to split each edge (u, v) into two directed

edges, (u, v) and (v, u), each with weight equal to the weight of the original edge (u, v).

2. Since I have a little space left in the page, here is a picture of the late Prof Dijkstra, that

I got form the web.

