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Integrating Replenishment Decisions with
Advance Demand Information

Guillermo Gallego * Ozalp Ozer
Department of Industrial Engineering and Operations Research, Columbia University,
New York, New York 10027
Department of Management Science and Engineering,
Stanford University, Stanford, California 94305

There is a growing consensus that a portfolio of customers with different demand lead
times can lead to higher, more regular revenues and better capacity utilization. Cus-
tomers with positive demand lead times place orders in advance of their needs, resulting
in advance demand information. This gives rise to the problem of finding effective inventory
control policies under advance demand information. We show that state-dependent (s, S)
and base-stock policies are optimal for stochastic inventory systems with and without fixed
costs. The state of the system reflects our knowledge of advance demand information. We
also determine conditions under which advance demand information has no operational
value. A numerical study allows us to obtain additional insights and to evaluate strategies

to induce advance demand information.

(Stochastic Inventory Systems; Advance Demand Information; Demand Lead Times)

1. Introduction

Different customers often have different willingness
to pay for the speed with which their orders are filled.
A build-to-order company may be able to improve
its profits by shifting its production strategy to sat-
isfy customers willing to pay higher prices for shorter
demand lead times.! This requires a mixed strategy
where part of the production is build to order and
part is build in anticipation of orders. Similarly, a
build-to-stock company may be able to increase its
profits by offering price discounts to customers will-
ing to accept longer demand lead times. This shifts
the production strategy from build to stock to build
to order. There is a growing consensus that manufac-
turers can benefit from a hybrid strategy of having
a portfolio of customers with different demand lead
times, see Appell et al. (2000). The hope is that such

! A customer who places an order [ units of time ahead of his
needs is said to have demand lead time [. This term was coined by
Hariharan and Zipkin (1995).
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portfolios will lead to higher, more regular revenues
and better capacity utilization.

Customers with positive demand lead times place
orders in advance of their needs resulting in what we
call advance demand information. In this paper we take
the portfolio of customers with different demand lead
times as given, and consider the resulting stochastic
inventory control problems under advance demand
information. We show that state-dependent policies
are optimal for systems with and without fixed order-
ing costs. Since the expected cost of these optimal
policies is essential to evaluate effectiveness of a port-
folio, the results of this paper are essential to the effec-
tive design of such portfolios.

Strategies to obtain advance demand information
include market segmentation where price-sensitive
customers place orders in advance of their needs (see,
for example, Chen 1999). Advance demand informa-
tion may arise from risk-averse customers that want
to minimize the risk of delivery delays; companies
can induce these customers to book early by giv-
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ing priority to early orders. Advance demand infor-
mation is often provided by supply chain partners.
Ford Motor Company, for example, issues and weekly
updates orders to its catalytic converter suppliers,
as discussed in the “Corning Glass Works” Harvard
Business School teaching case (1991). The e-commerce
of customized products such as personal comput-
ers provides advance demand information for the
product components. An example is Dell’s cutting-
edge distribution model. Under this model, con-
sumers are allowed to customize their choice of PC
online for future delivery (Hamm and Stepanek 1999).
Toyota recently announced plans to make customized
cars within five days, reflecting its ability to quickly
respond to advance demand information (see Simison
1999). GM and Ford are scrambling to catch up on this
trend. These strategies in conjunction with advances
in information technology assist companies in getting
a better sense of demand and its evolution over time.
Advance demand information, in addition, enables
companies to shift their production strategies from
build to stock to build to order. In spite of the fact that
many businesses operate in a dynamic environment,
stochastic inventory models that incorporate advance
demand information are rare.

In this paper we analyze a discrete-time, single-
item, single-location, periodic-review inventory prob-
lem. At the end of period t we observe the demand
vector

Dt = (Dt,t/ ceey Dt, t+N)/

where D, ;| represents orders placed by customers
during period t for future periods s € {t,... ,t+ N},
and N is the length of the information horizon over
which we have advance demand information. In each
period, a fixed cost is charged whenever an order is
placed. Orders arrive after an exogenously specified
lead time. Unsatisfied demands are fully backordered
where backorder costs are linear.

For the positive set-up cost case, we prove
that state-dependent (s, S) policies are optimal for
finite-horizon problems and also for a-discounted
infinite-horizon problems. The state of the system is
composed of a modified inventory position that
nets the known requirements and observed demands
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beyond the protection period.> Under a state-
dependent (s, S) policy, an order is placed to raise
the inventory position to state-dependent order-up-
to level S whenever it falls to or below the state-
dependent reorder point s. The proofs are based on
a geometric characterization of K-convexity that sim-
plifies the verification of the dynamic programming
inductive hypothesis. The proof for the infinite hori-
zon case is based on Iglehart (1963) and uses ideas
from Veinott (1966). One important result is that if
the observed demand immediately beyond the pro-
tection period is above a certain threshold, then a
policy that places an order to minimize the costs of
the current period is optimal. This “horizon” result
allows management to act optimally without pre-
cise advance demand information and significantly
reduces the computational burden of searching for
state-dependent policy parameters.

For the zero set-up cost case, the optimal policy
reduces to a state-dependent base-stock policy for
finite-horizon and a-discounted infinite-horizon prob-
lems. We show that the base-stock level is an increas-
ing® function of the observed demands beyond the
protection period. For the case of stationary costs and
demands, however, we show that observed demands
beyond the protection period have no influence on the
optimal base-stock level. This implies that manage-
ment should not invest in obtaining advance demand
information beyond the protection period for opera-
tional purposes.

Our computational study confirms the state-
dependent nature of our results and helps quantify
the value of advance demand information. Our exam-
ples indicate that systems that incorporate advance
demand information have lower average inventories
and lower inventory-related costs than the classi-
cal systems. The exercise of computing the benefits
of advance demand information can help managers
decide whether or not the benefits justify the costs
of acquiring advance demand information. Our com-
putational study also suggests certain monotonicity

2 The protection period is defined as the lead time plus a review
period.

3 We use the terms increasing and decreasing in the weak sense, so
increasing means nondecreasing.
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properties of the state-dependent order-up-to level for
the case of large set-up costs. This property, however,
fails to hold when set-up costs are small.

1.1. Literature Review

Early references to stochastic single-item/single-
location inventory problems date back to Arrow
et al. (1951). We are aware of three groups of
work that incorporate the dynamic nature of demand
updates. The first group uses Bayesian models; to
the best of our knowledge, Dvoretzky et al. (1952)
are the first authors to use Bayesian models, fol-
lowed by Scarf (1960), Azuory and Miller (1984), and
Azuory (1985). The second group uses time-series
models to subsume demand dynamics. These models
arise particularly when there is a significant intertem-
poral correlation among the demands of consecu-
tive periods. Examples of this work include Johnson
and Thompson (1975), Miller (1989), and Lovejoy
(1990). A third group of researchers have been con-
cerned with forecast revisions. Hausman (1969) mod-
els the evolution of forecast as a quasi-Markovian or
Markovian process. Heath and Jackson (1994) extend
this work by modeling the evolution of forecast using
martingales and coins the term Martingale Method
of Forecast Evolution (MMFE). Gilli (1996) stud-
ies the optimal policy that arises under MMEFE for
a zero set-up cost, capacitated single-item/single-
facility inventory system with zero lead times. Toktay
and Wein (1999) model a production system as a
single-server, discrete-time, continuous-state queue
under MMEFE. Gallego and Toktay (1999) characterize
the form of the optimal policy in a finite production-
capacity model where the fixed cost of ordering is
high enough to warrant all-or-nothing ordering in
each period.

Within the context of state-dependent policies the
seminal paper by Song and Zipkin (1993) is relevant
to our work. These authors show that optimal policies
are state dependent for a continuous-time discrete-
state inventory problem with Markov modulated
Poisson demands. Important extensions to the work
of Song and Zipkin include Sethi and Cheng (1997),
Song and Zipkin (1996), and Chen and Song (1999).

There are three additional papers related to ours.
Hariharan and Zipkin (1995) consider a continuous-
review model where customers place orders ! units
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of time in advance of their requirements. They show
that the demand lead time | directly offsets the sup-
ply lead time and, as a consequence, base-stock
and (s,S) policies are optimal for zero and posi-
tive ordering costs, respectively. Our model can be
viewed as periodic-review generalization of theirs,
and our results (appropriately interpreted) confirm
the optimality of state-dependent base-stock and
(s, S) policies conjectured by these authors for the
case of random demand lead times. Sobel and
Zhang (2001) study a finite-horizon periodic-review
inventory model where, in addition to spot (stochas-
tic) demands, there are known commitments in every
period. They assume that the commitments must be
honored without delay, but allow spot demands to be
backordered. They show that a modified (s, S) pol-
icy is optimal. Their model differs from ours in that
the commitments for the entire horizon are known
at the beginning of the horizon, the lead time in
their model is zero, and commitments cannot be back-
logged. Finally, Brown et al. (1971) consider a model
similar to ours but restrict the information horizon to
be at most the length of the protection period.

The remainder of the paper is organized as follows.
In §2, we introduce the necessary notation and the
model of demand information. In §3, we present an
alternative characterization of K-convexity and some
results that simplify the proofs. In §4, we establish
the optimal policies and the structural results for
inventory problems with positive set-up costs both for
finite-horizon problems and infinite-horizon station-
ary problems. In §5, we extend the results to inven-
tory problems with zero set-up costs. In §6, we obtain
additional insights to the problem through a numer-
ical study. In §7, we conclude and suggest directions
for future research. In Appendix A, we present the
construction of the dynamic program. We defer all the
proofs to Appendix B.

2. Model Description

This section introduces the notation and the model
of advance demand information. As stated before,
the vector D, = (D, ,,..., D, ;,y) represents orders
placed by customers during period t for periods
se{t,...,t+ N}, where N is the information horizon.

MANAGEMENT SciENCE/Vol. 47, No. 10, October 2001
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This is a random vector and its uncertainty is com-
pletely resolved at the end of period t. Notice that, at
the beginning of period t, the demand to prevail in a
future period s > t can be divided into two parts: The
part that is observed and known to us

t—1
Ot,sE Z Dr,s (1)

r=s—N

and the part that is unobserved and not yet known to
us

Ut,sEZDr,s' (2)

We define O, , =0 for s > t+ N since we do not
observe demand information beyond the information
horizon.

We assume that the unobserved part U , is inde-
pendent of the observed part O, ;. While it may be
desirable to model the unobserved part as dependent
on the observed part, there are cases where they are
naturally independent. This would be the case, for
example, when customers with independent demands
are segmented by their demand lead times. Making
U, ; dependent on O, ; would also require a larger
state space as discussed later.

Let I, be the inventory on hand and B, be the num-
ber of backorders at the beginning of period t. In
addition to I, and B,, at the beginning of period t we
also know the cumulative observed demands for peri-
odst,t+1,...,t+N—1 placed prior to period ¢. That
is, we know O, ; forse{t,... ,t+ N —1}.

We assume that an order for z, units placed at
the beginning of period t arrives at the beginning of
period t+L where the lead time L is assumed to be a
fixed nonnegative integer. The cost of ordering z, > 0
units in period t is given by K,6(z;) + c,z;, where K, >
0 is the set-up cost, and 6(z;) =1 if z, > 0 and zero
otherwise. This cost is realized whenever an order
is placed. This assumption can be easily modified to
incorporate other cases, including that in which the
cost is realized at the time of delivery. We also assume
that, at the end of the planning horizon, T, inventory
leftovers are sold for a salvage value of cr,;. In addi-
tion, backorders are satisfied by a final procurement
which is equal to ¢y, ; without incurring a set-up cost.

MANAGEMENT SciENCE/Vol. 47, No. 10, October 2001
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Our final assumption is «,K,,; <K, for all . None
of these assumptions are stronger than the assump-
tions of classical inventory problems (see Scarf 1959,
Veinott 1966, and Iglehart 1963).

To facilitate our discussion we use the term
protection-period demand to refer to the demand over
the next L +1 periods, e.g. {t,t+1,...,t+L}. Sim-
ilar to (1) and (2), at the beginning of period ¢t the
protection-period demand can also be divided into
two parts: The part that has already been observed and

known to us
t+L

OtL = Z Ot,s
s=t

and the part that is unobserved and not yet known to

us
t+L

lltL = Z U .
s=t

The state space is given by (x,, O,) where

-1
=L+ Zzs_Bt_OtL 3)

s=t—L

is the modified inventory position* at the beginning of
period t, prior to ordering z, and receiving z,_;, net of
observed protection-period demand. The second com-
ponent of the state space is

Ot = (Ot,t+L+1/ ceey Ot,t+N—1)/ (4)

which consists of cumulative observed demands for
periods beyond the protection period. Notice that the
state space is of dimension 1+ (N —L —1)*. Conse-
quently, the state space is one-dimensional whenever
N<L+1

After observing (x,, O,) the decision maker places
an order of size z, > 0 to be delivered at the beginning
of period t+L. In the traditional inventory literature,
where N is assumed to be zero, the current inven-
tory position is raised to protect against the protection-
period demand. In our case, we need to protect against
the unobserved part of the protection-period demand.

*We use the term modified to distinguish the definition from the
classical definition of inventory position, which does not include
observed part of the protection-period demand (the last term in
Equation (3)).
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The net inventory (physical inventory minus back-
orders) at the end of period t+L is equal to

t
L+ 3 z—B—0O; U =x,+z, - U =y, — U,
s=t—L
where y, = x, 4+ z,. We assume that on-hand inventory
is used to satisfy backorders, if any, and as much of
the current demand as possible, and that early fulfill-
ment of orders is not allowed. We assume that inven-
tory holding and backorder penalty costs are charged
to the inventory level at the end of the period.

The expected holding cost and penalty cost charged
to period t is based on the net inventory at the end of
period f+L.

G _ %L L
() = TtEgH—L(yt -u)
where a; = {:t v; and v; is the discount factor for
period i, y, =1 and g,(x) denotes the total holding and
penalty costs based on the inventory on hand at the
end of period ¢. We assume that g, is convex for each
t, that G, exists, and that lim,_, @(x) = oo. It is pos-
sible to weaken, for example, convexity to quasi con-
vexity, but then additional assumptions are required
(see Veinott 1966).

After observing D, = (D, 4, ...

inventory position is updated by

, Dy 1) the modified

t+L+1

X =%+2—=D; ;= Y Dy =0, 111 )

s=t+1
and the vector of observed demand beyond the pro-
tection period by

Ot+1 = (Ot+1/t+L+2/ ceey Ot+1,t+N) (6)

where O, (=0, ;+D, ..

A rigorous proof of the state-space reduction is
given in Ozer (2000). At this point we can dispose
of two cases: N =0 and 1 <N <L+1. The rest of
the paper deals with the more difficult and interesting
case N > L+1.

For N =0, notice that O, ;, =0 for all ¢ since nothing
is observed in advance. This is the classical case stud-
ied extensively in inventory theory for which classi-
cal results have been derived (see Arrow et al. 1951,
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Dvoretzky et al. 1952, Scarf 1959, Veinott 1966, Porteus
1971, Iglehart 1963, and Zheng 1991).

For 1 <N < L+1, although there is nontrivial infor-
mation about future demands, it is subsumed in the
modified inventory position. This makes the state
space one dimensional, so all the classical results
described for the case N =0 apply. If ordering takes
place in a period then the order quantity is increasing
in the observed protection period demand. The unca-
pacitated version of Giillii’s (1996) zero set-up costs,
zero lead time MMFE model falls within this context.
Extensions to positive set-up costs and positive lead
times, L > N —1 also fall into this case. See also Brown
et al. (1971) for an informal derivation of this result.

Our model allows what Hariharan and Zipkin
(1995) refer to as demand lead times, where customers
place orders [ units of time in advance of their require-
ments, as a special case by setting D, ; =0 for s #
t+1and D, ,,; = X where X is the random number
of units demanded at period ¢ for delivery in period
t+1. Random demand lead times can be modeled by
setting D, , =0 except for a randomly chosen period
reft,...,t+N} where D, , = X.

Next we provide an example to clarify the notation
and to illustrate how to update demand forecasts in
our model.

ExamMPLE. Let N =2, L =0, and let f be the current
period. Demand for period t+2 is given by %,,, =
Dt, 42 T Dt+1,t+2 + Dt+2, t2- Assume that E[DH_,-, t+2] =
A; for i =0,1,2. Our best estimate for ,,, at the
beginning of period t is E[Z,,|F] = Ag+ A+ Ay,
where 7, is o-field of events under the natural fil-
tration of the demand process. During period ¢, cus-
tomers place D ,,, orders for period t+2. Thus, our
forecast at the beginning of period t+1 is given by
E[%;,5|%:11] = Dy 115 + Ay + A,. Similarly, at the begin-
ning of period t+2 we have E[%,,|7,,,] =D, ., +
D1 140+ Ay, and finally E[9,,|%,,3] = 9,,,. Notice
that E[%,|%,], s <t is a (Doob’s) martingale, see e.g.,
Durrett (1996). Although the evolution of demand can
be cast in a martingale framework we prefer to avoid
this for the following reasons: (i) the notation and nec-
essary background become more complicated, and (ii)
martingale theorems (optional sampling, etc.) are not
needed in our context.

MANAGEMENT SciENCE/Vol. 47, No. 10, October 2001
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At this point, we would like to explore the diffi-
culties of keeping a manageable state space when the
unobserved part of the demand is modeled as depen-
dent on the observed part. A natural model would
be D, ;=a, ,+p, D, ; ;+¢€,. Notice that in this case
O, ; is not a sufficient statistics to compute the dis-
tribution of U, . Indeed, O, (=0, ; (+D;_; ;, s0 O,
hides the value of D, ; ,. Thus, in addition to (x;, O;)
we would need to keep the last N components of
D,_; as part of the state. It is also possible to have D,
governed by a Markov chain as in Song and Zipkin
(1993). This would augment the state space to include
the state of the Markov chain. Finally, a parsimo-
nious model where U, , depends only on the observed
part O, , = Y\_! D, , imposes strong distributional
assumptions on D,  for z € {t, ..., s} because U, , =

Zz:t Dz, s*

3. Preliminaries
In this section, we introduce a geometric characteriza-
tion of K-convexity that simplify the induction argu-
ments and a lemma that is helpful in obtaining the
main results in the paper. We defer all the proofs to
Appendix B.

DEerINITION 1. Let ¢t R — % and a > 0,b > 0. The
function g is called (a, b)-convex and denoted by g €
C(a, b) if it satisfies the following inequality;

§(6x;+ (1= 0)x,) < O(a+g(x1)) +(1-6)(b+g(xy)),

forall x;,<x, and 6€]0,1].

It is easy to show that (0, K)-convexity is equiv-
alent to K-convexity as introduced by Scarf (1960;
see Denardo 1982 and Porteus 1971). Paralleling
the epigraph characterization of convex functions,’
g € C(a,b) if and only if the line segment joining
(x1, 8(x1) +a) and (x,, g(x,) +b) is in the epigraph
of g.

The epigraph characterization has the following
geometric interpretation: A point (x;, g(x;) +a) is said

> A function g is convex if and only if the line segment joining

(x1,8(x1)) and (x,, g(x,)) is in the epigraph epi(g) = {(x,y) : y >
g(x)} of g. See Rockafellar (1997).

MANAGEMENT SciENCE/Vol. 47, No. 10, October 2001
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to be wisible from (x,, g(x,) +b) if all the intermedi-
ate points (x, g(x)), x; <x < x, lie below the line seg-
ment joining the two points. Visibility is a well-known
concept in analysis (see, for example, Kolmogorov
and Fomin 1970). The following are simple proper-
ties of (a, b)-convex functions. Part 5 of this lemma is
of special interest since it helps simplify the proof of
Theorem 1.

Lemma 1.

1. C(a,b) c C(a', V') for all (a,b) < (a', V).

2. If feC(a,b)and g C(a’, V') then for positive con-
stants a and B, (af +Bg) € C(aa+Ba’, ab+ Bb').

3. If g € C(a,b) and E|g(x — D)| < oo, where D is a
random variable, then G(x) = Eg(x —D) € C(a, b).

4. If f(x,y) € C(a, ) for a fixed vector y and Ep|f (x —
D, y)| < oo, then F(x) =Ep yf(x—D, Y) € C(a, b) where
Y is a vector of random variables.

5. If g € C(a, b), where a < b, and s is such that g(s)+
a < g(x)+b for all x > s, then f(x) = g(max(x,s)) €
C(a, b).

DEFINITION 2. A function f: R x ®" — R is said to
have decreasing differences in (x, ) if it satisfies the
following inequality.

f(xll 9)_f(x2/ ‘9) Ef(xll 6,)_f(x2/ 0,)

forall x;,>x, and 6>9". 7)

This concept is closely related to submodularity
which is often used to show monotonicity results (see
Topkis 1998 and Veinott 1980).

4. Inventory Problems with

Positive Set-up Costs

The case N < L+1 reduces to a one-dimensional prob-
lem and has been dealt with. From this point on we
assume that N > L4 1. We characterize the policy that
attains the minimum total cost of managing inventory
over a finite-horizon problems followed by infinite-
horizon problems. From now on we denote O, by o,
when O, is known, that is at the beginning of period t.

The functional equation for the problem is given by

Ji(x;, 0,) = %Q{Kts(% —x)+ Vi (y;, 01}, (8)

Vi, 0)) = Gi(yy) + @1 EJi 1 (X141, Opin), )
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where Jr1(-,-) =0 and G,(y) = (¢; — Vice0)y + Gi().
Notice that the expectation in (9) is with respect to the
vector D,. Appendix A gives a formal construction of
this functional equation.

We rewrite the dynamic program to simplify the
characterization of the optimal policy. When the opti-
mal policy chooses not to order at the beginning
of period t, the optimal value J,(x,, 0,) is equal to
Vi(x,, 0,). Therefore, Equation (8) can be expressed as

Ji(x;, 0;) = V(x;, 0,) + min{H,(x,, 0,), 0},

where H,(x;, 0,) = K, + min, ., V(y;, 0,) — Vi(x;, 0,). If
H,(x,, 0;) <0, then it is optimal to order. On the other
hand, if H,(x,, 0,) > 0, it is not optimal to order. If
H,(-, 0,) has a unique sign change from — to + for
every o, then the policy has a simple form: an interval
in which ordering is optimal followed by an interval
in which ordering is not optimal.

LeEmMA 2. The function H,(-,0,) has a unique sign
change from — to + if the following conditions are satisfied
for any fixed vector o,; (i) V,(-, 0,) € C(0, K,), (ii) there
exists a finite minimizer S,(o;) of V,(-, 0,), (iii) there exists
x < 5,(0;) such that V,(x, 0,) > K, + V,(5(0;), 0,).

Define s,(0,) = max{x, : H,(x,,0,) < 0}. Clearly
s(0,) < Sy(0,) since H,(5,(0,), 0,) = K,.

CoROLLARY 1. If the conditions of Lemma 2 are satis-
fied then there exists a finite s,(0,) such that it is optimal
to order-up-to S,(o,) if and only if x <s,(0,). The optimal
value can be written as

Ji(x, 0;) = Vi(max(s;(0;), x), 0;). (10)

The next result establishes the optimality of (s, S)
policies where the policy parameters depend on
advance demand information.

TueoreM 1. The following statements are true for any
fixed vector o, :
1. Vi(-, 0,) € C(0, K}) and lim,,_, ., V,(x, 0;) = oe.
2. An optimal policy is defined by a state-dependent
(s,(0;), Si(0,))-policy where
5(0o;) = min{y : V,(y, 0,) < Vi (x, 0,) for all x},

s;(0;) = max{x : H,(x, o;) <0}.
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3. Ji(,o) € C(O,K,) and lim,, J(x,0) = oo,
lim, , . Ji(x, 0;) = V(s,(0,), 0)-

In this paper, we will refer to an inventory problem
as stationary if the demand and the cost parameters
are stationary, i.e., ¢;=¢, g;=¢, @j=a, and k; =k and
we drop the subscript from single-period cost func-
tion G. For the analysis of infinite-horizon problems
we assume stationarity. Let us define

§" = min{y : G(y) < G(x) for all x},
s" = max{y < S": G(y) > K+ G(S™)},
S =min{y > S": G(y) > G(S") +aK}.

The pair (s™,S™) is a myopic policy for the pos-
itive set-up cost case that does not depend on
advance demand information. Notice that all three
points exist since G is convex with respect to y and
lim, . G(y) = oo.

THEOREM 2. For stationary finite-horizon problems, if
Ot 14141 = (§—s™), then S,(0,) = S™.

The theorem proves that once the observed demand
for period t+L+1 exceeds S —s", the myopic order-
up-to level is optimal for the stationary positive
set-up cost problems. The threshold level is a func-
tion of the lower bound for the reorder point and
the upper bound for the order-up-to level. Tighter
bounds result in a lower threshold level. As the set-up
cost increases the observed demands for the imme-
diate period beyond the protection period need to
be higher for the horizon result to hold. This result
has both managerial and computational implications.
Management can ignore advance demand informa-
tion beyond period t+L+1 if the observed demand
for period t+L+1 is sufficiently high. In particu-
lar management should concentrate in ordering, if
needed, to satisfy the demand for period ¢+ L, know-
ing that a new order will be placed in period f+1.
The horizon result limits the need to search for state-
dependent policies when the observed demand for
period t+ L 41 is sufficiently large, making it easier
to compute optimal policies.

We have shown the existence and the optimality
of a state-dependent (s,(0;), S;(0,)) policy for finite-
horizon problems. Next, we establish upper and
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lower bounds for the optimal finite-horizon poli-
cies. We then use Heinz-Borel theorem to claim
that the sequence {s,(0,), S,(0,)};2, has convergent
subsequences. Then we state that the limit points
of this sequence satisfy the functional equation for
the infinite-horizon problem and they are, therefore,
optimal policies.

LeMMA 3. For all t and any fixed vector o, S™ <
5:,(0;) < S, and s™ < s,(0;).

This lemma bounds the optimal policies both from
below and above. The bounds presented here are sim-
ilar to the ones established by Veinott (1966) and
Iglehart (1963). The following lemma is necessary to
prove that the limit of the optimal value for the finite-
horizon has convergent subsequences.

LEMMA 4. For all t and any fixed vector (x,o0),
Vt—l(x/ 0) z Vt(x/ 0) and It—l(x/ 0) z ]t(xl 0)'

This result shows that the optimal value for a finite-
horizon problem increases as the number of planning
periods increases. This is quite intuitive since manag-
ing inventory for an additional period results in an
additional cost. The next result establishes the optimal
policies and extends the horizon result for infinite-
horizon problems.

Let us now consider the finite-horizon stationary
case and the limit as the horizon grows to infinity. We
know that V,(x, 0) depends on time to go T —t. We
know consider the limit of the functions ], and V, as
T — oo.

THEOREM 3. For any fixed vector o, = o,

1. limy_, ., J,(-, 0) exists and converges uniformly to a
function [(-,0) and satisfies the functional Equation (8).
Hence, it is the optimal value function for the infinite-
horizon problem.

2. The sequence {s,(0), S;(0)} converges to a limit point
(5(0), 5(0)). Any limit point of S,(0) is a minimizer of the
function

V(y,0) = G(y>+aE{I<y—Df,t

t+L+1
- Z D, =0 11141/ Of+1}'

s=t+1

Furthermore, function V (-, 0) is (0, K)-convex and s(o) is
the max{y : H(y, 0) <0}.
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3. The policy (s(0), S(0)) is optimal for the infinite-
horizon problem.

4. If o 4141 = (S —s™) then S(0) = S™, extending
Theorem 2 to infinite-horizon problems.

Lemma 3 and Theorem 3 imply Corollary 2.

COROLLARY 2. s" < s(0) and S™ < S(0) < S.

5. Inventory Problems with Zero
Set-up Costs

The functional equation for the zero set-up cost is
given by Equation (8) with K, =0 for all t. The fol-
lowing theorem summarizes our findings for the zero
set-up finite-horizon problems where we do not nec-
essarily assume stationarity.

THEOREM 4. The following statements are true for any
fixed vector o, :

1. Vi(x,0;) is a convex function and lim,_
xVi(x, 0;) = o0.

2. An optimal ordering policy is a state-dependent base-
stock policy where the order-up-to level is given by the
smallest value of y that minimizes V,(y, o), i.e.

yi(o) =min{y : Vi(y, 0,) = 1’I'lin'1 Vi(x, o)} 11)

3. Ji(x, 0,) is an increasing convex function.

4. V,(x, 0,) has decreasing differences in (x, o,).
5. y,(o,) is increasing in o,.

6. Ji(x, 0,) has decreasing differences in (x, o,).

So the optimal policy is to order whenever the
modified inventory position falls below a base stock
level. Part 5 of Theorem 4 shows that systems main-
tain higher order-up-to levels, hence higher average
inventory levels, as the level of observation for future
periods beyond the protection period increases. This
also suggests the possibility of developing heuristics
that increase the order-up-to level as o, increases.

The following lemma for the finite-horizon station-
ary case shows that classical monotonicity results also
hold for our model.

LemMa 5. V,_4(x,0) = V,(x,0) and ],_,(x,0)
Ji(x,0). In addition VV,_i(x,0) > VV,(x,0), v,_1(0)
y,(0), and V],_i(x, 0) = V],(x, 0) hold for all t.

IA 1V
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A simple heuristic for the finite-horizon problem,
which is generally not optimal, is to ignore the effect
of upcoming periods and focus on minimizing the
single-period cost G,. Let

]/rT\in,t =min{y : G,(y) = rnxin Gi(x)},
Yomin,r = max{y : Gy(y) = mxin G (%)}

Notice that the range collapses into a unique point
when G(-) is strictly convex. We define y;" =y .
For stationary problems, y;" is independent of t and
will be denoted by y™.

THEOREM 5. If the sequence y}" is nondecreasing in t
then the myopic policy is optimal. In particular, for sta-
tionary problems, the base-stock level y™ is optimal for
finite-horizon problems.

This theorem parallels well-known results for the
classical case without advance demand information,
which is addressed by Veinott (1965). For the advance
demand information case, it tells us that information
beyond the protection period does not affect the order-
up-to level when we assume stationary costs and
demand distributions. Intuitively, it makes sense, in
the absence of fixed costs and capacity restrictions, to
order only enough to cover for the protection-period
demand. This result significantly reduces the compu-
tational effort since the state space collapses to a sin-
gle dimension. It also implies that management need
not obtain advance demand information beyond the
protection period for inventory control purposes. In
addition, myopic policies are also optimal when y;" is
increasing. This would be the case, for example, under
stationary costs when demand is ramping up.

Let us now consider the finite-horizon stationary
case and the limit as the horizon grows to infinity. We
know that V,(x, 0) depends on the time to go T —t.
We also know that the smallest minimizer of V,(-, 0)
is y” which is independent of both o0 and f. We know
consider the limit of the functions J, and V, as T — oo.

THEOREM 6. For any fixed vector o,

1. lim;_, . J,(-, 0) exists and converges uniformly to a
convex function J(-, 0). Furthermore, lim,_, . J(x, 0) = oo.

2. limr_,, V,(-, 0) exists and converges uniformly to a
convex function V (-, 0). Furthermore, lim,_, . V(x, 0) =
oo, 50 V (-, 0) admits a finite minimizer y(0).
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3. y(o) =y™ is an optimal policy for the infinite-horizon
problem.

6. Numerical Study

In this section, we provide managerial insights into
our model of advance demand information. We use
a backward induction algorithm to solve functional
Equation (8). The basic idea of this algorithm is to
solve the dynamic program starting from the very
last period, which is a single-period problem, by eval-
uating the cost for each instance of the state space
and choosing an action that minimizes the cost and
repeating these steps until the first period is reached.
Throughout these computations, we use the following
combination of parameters.

L=0,N=L+2[K=0,5,50,100[=1,2,3,6]p=1,3,6,9,19,99]

Recall that for N = L +2 the state space is two-
dimensional, see the example in §2. The case L =0
and N =2 is the simplest case for which the prob-
lem is nontrivial, and is general enough to capture the
main ideas. The demand vector for N =2 is given by

Dt = (Dt, tr Dt, t+17 Dt, t+2)~

In our computational study D, ,,; is modeled by Pois-
son distribution with mean A;. Due to Equations (1)
and (4), vector o, is a scalar and given by D, ; ;. The
computational effort to solve the problem optimally
increases with the length of the information horizon,
N. An interesting direction for future research would
be the development of efficient heuristics based on
the results and insights obtained in this paper.

Recall that y, is the modified inventory position
after ordering whereas x, is the modified inventory
position before ordering, i.e. y, = x, +z,. Figures 1(A)
and (B) depict the relationship between y, and x;, with
respect to observed demand information beyond the
protection period, which is in this case D, ; ,,,. We
observe the optimality of state-dependent (s, S) policy
for the positive set-up cost case, i.e., if x; <s5,(D;_; ;1)
then order up to S,(D;_,; ;,;), otherwise do nothing.

This observation is proved in Theorem 1. Notice
that order-up-to level increases as the level of
observed demand increases for large set-up costs.
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Figure 1(A) Positive Set-up Cost
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Counter examples, however, show that this monoton-
istic behavior is not a general property, see Table 2.

On the other hand, our extensive experiments
indicate that the reorder point s,(D;_, ,,,) decreases as
D;_, ;. increases. We found the observation surpris-
ing, because intuition suggests that the reorder point,
5{(D;_1,41), should be increasing in D, _; ,,; making
it more likely to place an order to cope with observed
demands. Careful thought, however, reveals a more
complete story. First, notice that if x, is not too low,
the holding and penalty cost of not ordering may be
lower than the cost of ordering and carrying D, ; ;4
for one period. This suggests that at high values of
D, 1, it may be better to incur a shortage cost now
rather than to place an order and carry inventory for
the next period. On the other hand, for sufficiently
low values of x, and very high values of D, ; , 4
it is best to place two consecutive orders, which is

Figure 1(B)  Cross-Section of (A) at D,_, ,,, =10
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shown in Theorem 2. In this case it is optimal, to
raise the modified inventory position of the first order
to minimize current costs, i.e., 5,(D;_; ;,;) = S" when
D,_; 111 > S—s", we see a sharp drop of order-up-to-
level in Figure 1 (a).

In addition to Theorem 4, Figure 2(A) and (B) clar-
ify that order-up-to policy is optimal for the zero
set-up cost case. As shown in Theorem 5, a change
in D; ; ;;; (observed demand beyond the protection
period) does not affect the order-up-to level. Informa-
tion beyond the protection-period does not influence
the order-up-to level, i.e., y,(D;_; ;,;) =y" is optimal.
Experiments 1-6 in Table 1 confirm this point.

Our computational study enhances the sentiment
that advance demand information reduces the overall
system cost comprised of set-ups, holding, and short-
age costs. One can also use our model to quantify the

Table1 K=0,h=1,p=9,(D, ,.;)forD_, ., el0,..., 15}, T =12
No. 4 A, A, 0 12 3 456 7 8 9 10 11 12 13 14 15 y»
1 414 77777777777 7 7 7 71 1 1
2 441 2 777777777771 7771 7171 1
3 411 7777777771771 7 771 71 71 71
4 31 2 5555555550505 5 5 5 5 5 5
5 2 1 3 4444444444 4 4 4 4 4 4 4
6 1 1 4 22222222222 2 2 2 2 2 2

MANAGEMENT SciENCE/Vol. 47, No. 10, October 2001

-1;"

1353



RIGHTS LI

GALLEGO AND OZER
Integrating Replenishment Decisions with Advance Demand Information

Figure 2(A) Zero Set-up Cost Cross-Section of (A) at D,_; ., =5

K=0, h=1, p=9, A;=3, A,;=1, A,=2

t1,t+1

cost reduction due to advance demand information.
Implementation of strategies to acquire this infor-
mation often comes with cost. The following exam-
ple illustrates how our model quantifies the trade-off
between the benefits of advance demand information
and cost of implementing a pricing strategy.

Recall that demand at any period for our numerical
study is given by %, =D, , ;+D, ; ;+D, ,. In Table 3,
we fix the mean value of the demand at 6(= Ay + A, +
A,) and increase A, while decreasing A, (in this way,
we model the case where the decision maker obtains
more advance demand information). Assume that a
brand manager is trying to acquire advance demand
information through pricing strategies. She is willing
to reduce the price of the product if customers are
willing to accept future delivery. Strategies Nos. 10
through 15 in Table 3 model her aggressiveness in

Figure 2(B)  Cross-Section of (A) atD,_; ,,, =5
K=100, h=3, p=9, Aj=4, A, =1, A,=1
60 : : . - -
501 1
40 1
> 30f T
20F T
10F T
0 . . . . .
-60 40 20 0 20 40 60

reducing prices. If she reduces the price dramatically,
she attains the demand intensity structure of No. 15.

She can compare the benefits gained through
advance demand information with the losses in prof-
its due to aggressive price reductions and decide
which strategy to implement. Figure 3(A) depicts
the cross section of optimal cost functions for strate-
gies Nos. 10-15 where the cross-section is the plane
defined by D, .., = 10. Figure 3(B) illustrates the
cost reduction (of approximately 18% between exper-
iments Nos. 10 and 15) gained through advance
demand information. Notice that as she implements
more aggressive strategies, the cost function decreases
except when the initial modified inventory position is
high, e.g., x, > 5,(D;_; ;,;), which is a transient effect
for problems with several long planning horizons. It

Table2 K =5,h=1, 5,0, 4 1.1),S/(Dpy 1) 08D,y .y €10,... 15}, T =12

No. Ay A A 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 sm Sm 3§

74 1 1 sy 9 7 7 7 71 7 1 71 71 1 71 1 1 1 71 7 3 7 13
p=9 s() 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

8 1 1 4 S() 4 4 5 2 2 2 2 2 2 2 2 2 2 2 2 2 0 2 9
p=9 sy 1t 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

9 4 1 1 S() 6 6 5 4 4 4 4 4 4 4 4 4 4 4 4 4 -3 4 1
p=1 s() 0 1 —2 —2 2 2 2 2 2 -2 2 -2 -2 -2 -2 -2
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Table3 K =100, h=1,p=9 5,0, 11). Si(Dy_y 1) fOr D,y 11y €{0,... 15}, T =12

No. Ay A Ay 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 smoSsm S

0 5 1 0 S() 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 -7 8 110
s) 2 2 2 2 1 1 1 1 1 1 1 1 1 0 0 0

"4 1 1 S() 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 -8 7 108
s) 1t 1 1 1 1 0 0 0 0 0O 0 0 0 0 -1 -1

2 3 1 2 S() 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 -9 5 107
s) 0 0 0 0 0 0 -1 -1 -1 —1 -1 -1 -1 -1 -1 -2

3 2 1 3 S() 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 10 4 105
s() -1 -1 -1 -1 -1 -1 -1 -2 -2 -2 -2 -2 -2 -2 -2 -2

“ 1 1 4 S() 27 28 29 30 31 32 33 34 35 36 37 38 39 40 4 42 11 2 104
s() 2 -2 -2 -2 -2 -2 -2 -2 -3 -3 -3 -3 -3 -3 -3 -3

5 0 1 5 S() 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 12 0 100
s() -3 -3 -3 -3 -3 -3 -3 -3 -3 -4 -4 -4 -4 -4 -4 -4

is also evident from Table 3 that as more advance
demand information is available, the order-up-to level
and the reorder point decrease, suggesting a reduc-
tion in average inventory level.

7. Conclusion
In this paper we establish the form of optimal poli-
cies for a model of advance demand information. We

Figure 3(A) Optimal Cost as a Function of x, for Experiments Nos. 10-

15, Dt—1‘[+1 =10

<10y

Xi
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show that the problem reduces to known results when
the information horizon is shorter than the protec-
tion period. When the information horizon is longer
than the protection period, a state-dependent base-
stock policy is optimal in the case of zero set-up costs,
and a state-dependent (s, S) policy is optimal for pos-
itive set-up costs. The policy parameters depend on
the observed demands beyond the protection period.

Figure 3(B) Optimal Cost as a Function of Experiment Numbers for
Di_y:1=0andD,_,, ,=10, Where x, =0
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We prove monotonicity of the base-stock levels for the
zero set-up cost case, and show that a myopic policy
is optimal for the infinite-horizon stationary case. For
fixed set-up costs, we show that the myopic order-
up-to policy is optimal when the observed demands
beyond the protection period exceed a threshold level.
Our numerical study indicates that system perfor-
mance improves as customers place orders further
into the future. It is necessary to quantify these ben-
efits to see if they offset the cost of implementing
strategies that elicit advance demand information.

There are, however, interesting avenues for further
research. We wish to find conditions that guarantee
monotonistic behavior of the policy parameters for
the positive set-up cost case. These results, if obtained,
will help in the development of efficient algorithms
to solve large-scale problems to optimality or in the
construction of efficient heuristics. Performance anal-
ysis of these heuristics is also an appealing research
direction. We are currently investigating the optimal-
ity of state-dependent policies when the criterion is
long-run average cost, and extending the analysis
to the case of multiple products. Due to contractual
agreements, once customers commit, they are often
required to honor their obligation. Customers, how-
ever, are sometimes allowed to cancel free of charge.
Exploring the issues raised here for such cases will
shed more light to the use of advance demand infor-
mation on inventory control problems.

Appendix A: Dynamic Programming Formulation
If the policy for the problem is specified by Y, = (v, Y11/ -+, Y1)»
then the expected cost of inventory management due to holding,
procurement, and penalty costs is

~ T ~
Ji(x, OY,) = Ezaf{Kja(yj —X,)+Cf(y, _x/')+Gj(yj)}

j=t

L
— a0 E(rry — Upyy).

Notice that the expectation is taken at the beginning of period t and
that the starting inventories generated by the policy Y, are random.

By substituting the updates (5), (6) for x;,,, O, into the above
equation and rearranging the terms we arrive at

- T
Ji(x;, O,Y)) = EZO‘/{KJ“S(% =x)+G;y)}+ f(x, O,

j=t
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where G;(y;) = (c; — v,¢;i1)y; + G;(y;) and f(x,, O,) = Y @y X
¢iiE(D; i+ +D; js141+ O jir1) — 6%, The last term is indepen-
dent of the choice Y,. Therefore, we define J,(x,, O,|Y;) as

Ji(x, OY)) = E 3 ai{K;d(y; —x)) + G;(y;)}- (12)
j=t

The problem is to find a policy that minimizes the cost func-
tion (12). Thus, we want

Ji(x;, O) = Viynfijz(xn O/lYy)
et

where s denote the set of all policies, including history-dependent
policies. It can be shown that a Markov policy that achieves the infi-
mum above exists. Therefore, the infimum can be replaced by the
minimum. For a further discussion, refer to chapter 6 in Puterman
(1994). The functional equation for the problem, thus, can be writ-
ten as

Ji(x;, O) = ?E}_’:{Kta(yz —x)+G(y1)
+,EJ; 1 (Xp41, Opir)} (13)

where J;,,(-, ) =0 and the expectation is with respect to the vector
D, = (Dr,u Dy aseee s D, pin)-

Appendix B: Proofs
Let VF(x,y) =F(x+1,y)—F(x, y).

Proor oF THEOREM 1. The proof is based on an induction argu-
ment built around Part 1. For t = T the problem reduces to a single-
period inventory problem. For this case, Part 1 is trivially satisfied
since Vi (-, or) = Gy (-) € C(0,0) C C(O, Ky) and lim,_, , Gy(x) = oo.
Assume by induction that Part 1 is true for ¢t = n. Thus, V,(., 0,) has
a finite minimizer, call it S,(0,). Also there exists a y < S,(0,) such
that V, (v, 0,) > K, +V,(S,(0,), 0,). All three conditions of Lemma 2
are satisfied so H, has a unique sign change from — to +. Thus,
the second part of the theorem is true by Corollary 1. The opti-
mal value (10) and Lemma 1, Part 5, proves that ], (-, 0,) € C(0, K,).
The limits in the third part follow immediately from Equation (10)
which proves part 3 for t = n. This fact implies that the limit of

‘/n—l (]/;,71 4 On—l) = Gn—l (%14) + anE]n (xnl On)

when |x| — oo is oo due to lim,_,,, G, ;(x) = oo. It also implies that
Vi_i(-,0,.4) € C(0, ,K,) C C(0, K,_;) due to Lemma 1, Parts 2 and
4, and the convexity of G,_;. Thus the first part of the theorem is
also true for t =n—1, concluding the induction argument. [
ProorF oF THEOREM 2. We proved the optimality of state-
dependent (s,(0;), S;(0;)) policy in Theorem 1. If modified inventory
position x, < s,(0,), then it is optimal to order-up-to S,(0,). The cor-

responding optimal value is given by
Ji(x, 0) = Ky +G(S,(0,)) + EJia

t+L+1
X (Si(o.‘) =Dy = > Dii= 04141, Ot+1) ’

s=t+1
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where 0, = (0, 11141, -+ , 04, 1sn-1)- We now demonstrate that S,(o,) =
S"if 0, 1141 = (S—s™). Assume for a contradiction that S,(0,) > S™.
Lemma 3 and the condition of the theorem lead to the following
inequalities

m T m
§" > S =0 11 = 5(0) = 0y 141 > S =04 pypa-

By the above inequalities we conclude that

t+L+1
EJiy (St(ot) - Dt,t - Z Dt,s — 04, 41417 Ot+1)

s=t+1

t+L+1
=Elin <Sm -D,,- Z Dy s =0 141/ Of+1>'

s=t+1

Since G(S;(0;)) > G(S™), we conclude that

Ji(xi, 0) > K+ G(S") + E i

tL+1
X <Sm =Diy= 3. Dii=0 11 Ot+1>r
s=t+1

contradicting the optimality of S;(o,). O

Proor or THEOREM 3. It suffices to show that the function J, is
bounded from above. Implementing the myopic order-up-to level
in each period yields a trivial upper bound. We incur K+ G(5™)
in each period. If the initial inventory level is greater than S", it
takes finite period of time, M, to deplete the inventory below S5™.
Let us denote the cost incurred during this initial phase by C,;.
Then Cy + o™{(K + G(5"))/(1 — )} elicits a trivial upper bound.
The proof of the first three parts, which implies the last part due to
Theorem 2, follows the same steps as in Iglehart (1963), hence we
refer the reader to his paper for the details. O

ProoF oF THEOREM 4. We assume similar terminal conditions as
in the positive set-up cost case. Hence, function V;(x, O;) is equal
to convex function G (x) and the limit is equal to co when |x| — co.
Assume by induction that the first part of the theorem is true for
t = n. This implies the second part of the theorem; if x <y, (0,) then
order-up-to y,(0,). Optimal value, thus, can be written as

Ju(x, 0,) =V, (max(y,(0,), x), 0,)- (14)

Equation (14) is an increasing convex function since for x >
¥a.(0,), V,(x,0,) is convex and increasing due to Part 1 and 2,
proving the third part of the theorem. To conclude the induction
argument it suffices to show that the first part of the theorem is
true for + = n—1. Notice that the update for the modified inven-
tory position is linear and therefore a convex function of x. Also
the composition of an increasing function and a convex function
is convex (see Denardo 1982). Likewise, the convex combination of
a convex function is convex. Thus V,_;(x,0,_,) is a convex func-
tion and lim, . V,_4(x, 0,_;) = oo which concludes the induction
argument for Parts 1, 2, and 3.

We now prove that Part 4 implies Part 5. Assume for a con-
tradiction, there exists o, > o; such that y,(0,) < y,(0;) where y(-) is
defined as in Equation (11). Notice that

0 < Vi(y,(0p), 0,) = Vi (y:(01), 0,)
= Vz(yt(oé)/ 0;) - Vt(yt(of)/ O;) = 0.

A
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The first and the last inequality follow from the definition of
¥:(0;) and y,(o0,), respectively. The second inequality follows from
decreasing differences. Hence, the above inequalities can only be
satisfied as equalities. This implies V,(y,(0;), 0;) = V,(y,(0,), 0;). We
can conclude that y,(o,) is also a minimizer of function V,(-, o)
and it is smaller than y,(o;) by assumption. This, however, con-
tradicts the definition of y,(0;). Thus, Part 1 implies y,(o,) > v,(0})
for all o, > 0;. Next, we prove the theorem by induction. For t =
T, Vi(x, Or) = Gy(x) satisfies the definition of decreasing differ-
ences, see Equation (7). Assume by induction that the first part
of the theorem is true for t =n. This implies the second part. To
prove Part 6 we investigate several cases and show that optimal
value J,(x,0,) = V,(max(y,(0,), x), 0,), has decreasing differences
in (x, 0,). For ease of notation we drop the subscripts.

Case 1. If x > x' > y(0) > y(0') then [(x,0) = V(x,0), J(x',0) =
V(x',0), J(x,0)=V(x,0) and J(x',0) = V(x',0"). The optimal
value satisfies Inequality (7) due to the induction argument.

Case 2. If y(0) > y(0') = x > x’ then J(x, 0) = V(y(0), 0), J(x', 0) =
V(y(0),0), J(x,0)=V(y(0),0) and J(x', 0") = V(y(0'), 0'). Inequal-
ity (7) is trivially satisfied.

Case 3. If y(0) > x > x' > y(0’) then J(x, 0) = V(y(0), 0), J(x', 0) =
V(y(o),0), J(x,0)=V(x,0) and J(x',0") = V(x',0'). Recall that
V(x,0') is an increasing function of x for fixed o' and x > y(0').
Thus, V(x,0)—V(x',0) >0 for x > x’ > y(0'). The inequality is
again satisfied.

Case 4. If y(0) = x > y(0') = x’ then J(x, 0) =V (y(0),0), J(x', 0) =
V(y(0),0), J(x,0)=V(x,0)and J(x', 0') =V (y(0’), 0'). The inequal-
ity is satisfied since y(0’) is a minimizer of V (-, 0').

Case 5. If x > y(0) = x' > y(0') then J(x,0) =V (x,0), J(x',0) =
V(y(0),0), J(x,0)=V(x,0) and J(x',0) = V(x', 0'). Notice that
Vi(x,0)—V(y(0),0) <V(x,0)=V(y(o),0)<V(x,0)=V(x',0)since
V(x,0) has decreasing differences in (x,0) and V(x,0') is an
increasing function for x’ > y(0’).

All these cases show that Part 6 is true for t = n. Due to the
definition V,_;, Equation (9), and the fact that ], has decreasing
differences, we can conclude that V,_; also has decreasing differ-
ences. This proves Part 4 for t =n—1, and concludes the induction
argument. [J

ProoF oF THEOREM 5. We prove first Part 1 where y}" <y},
for all t. For t =T, V,(y,0,) = G;(y). Therefore, any minimizer
of G;(-) gives an optimal order-up-to level. By the definitions of
yr(or) and yf' we have yJ' = y;(or). Assume by induction that
yr’znﬂ = yn+1(0n+1)' Recall that yn(on) = Yun (an) = y;’;l holds due to
Lemma 5 and the inductive hypothesis. We want to show that
y,(0,) = yr. Suppose first that y,(0,) <y, then VG,(y,(0,)) < 0.
Also recall that J,.,(x,0,.1) = J, 1Y), 0,,) for all x <y, so
V]i1(x, 0,.1) = 0. Consequently, VV,(y,(0,), 0,) <0 which contra-
dicts the optimality of y,(0,). Consider now the case vy < y,(0,).
We have G, (y!") < G,(y,(0,)) by the definition of myopic policy and
Jua (U5 0) = Ji1 (¥, (0,), 0) since yt <, (0,) <y, Thus V, (v, 0,) <
V.(y,(0,),0,),s0 yi is a minimizer of V, (-, 0,) that is strictly smaller
than y, (0,) which contradicts the definition of y,(0,). Consequently,
yi =y,(0,) as claimed. The proof for the second part of the theorem
for the stationary case is entirely similar. [
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ProoF oF THEOREM 6. Similar to the fixed set-up cost, C), +
oM{G(y™)/(1 — a)} gives a trivial bound for the optimal value.
The first and second parts of the theorem immediately follow from
Theorem 4 and Lemma 5. The first two parts of the theorem and
Theorem 5 imply the last part concluding the proof. O

Proor oF LEMmA 1. The first three properties can easily be
shown by using the definition of (a, b)-convex functions. Hence we
will only prove the last two properties.

Part 4. From the Part 3, E[f(x—D, y)] is (a, b)-convex for all y. Part
2 and the fact that the expectation is a weighted sum where the
weights add up to one concludes the proof for Part 4.

Part 5. Let x; < x,. We need to show that (x;, f(x;) +a) is visi-
ble from (x,, f(x,) +b). This is trivial in x, <s, so consider the
case x; < s < X,. We have to show that (x;, f(x;) +a) = (x;, g(s) +
a) is visible from (x,, f(x,) +b) = (x,, §(x,) +b). Consider the line
segment joining (s, g(s) +a) and (x,, g(x,) +b). The slope of this
line is greater than the slope of the line joining (x;, g(s) +a) and
(%, g(x,) +b) since x; < s. Consequently, the line joining (x, g(s) +
a) and (x,, g(x,) +b) lies above the line joining (s, g(s) +a) and
(%5, g(x,) +b) and, hence, above the function f. Moreover, the line
joining (x;, g(s)+a) and (x,, g(x,) +b) has a nonnegative slope on
account of g(x,)+b > g(s) +a and, as such, lies above f(x)+a=
g(s)+a over the interval x; <x <s. O

Proor oF LEMmA 2. We have H,(x, 0,) <0 from Part 3 and 0 <
K, = H,(5,(0,), 0,) from Part 2. Thus, H,(x, o,) has at least one sign
change from — to +. We now argue that if V,(-, 0,) is (0, K;)-convex
then H,(..., o,) has at most one sign change from — to +. Assume
for a contradiction that H,(x;,0,) > 0 > H,(x, 0,) for some x; < x.
This implies that there exists an x, > x such that V,(x;, 0,) < K, +
miny,le Vi, 0) <K, +miny,zx Vi, 0) < K+ Vil(xy, 0) < Vilx, 0y),
so this leads to V,(x, 0,) > max(V,(x,, 0,), K, + V,(x,, 0,)), but then
V, € QC(0, K,), where a function f is (a, b)-quasi-convex, denoted
by f € QC(a,b) if it satisfies the following inequality f(x) <
max(f(x;) +4a, f(x,) +b) for all x such that x; <x <x,. Thus, V, ¢
C(0, K;) since C(0, K;) C QC(0, K,). This together with condition 1
preclude sign changes from + to —, proving that H, has a unique
sign change from — to +. O

PrOOF OF LEMMA 3. Recall from the optimal value of the finite
horizon problem, equation (10), that

0, ,
VIi(x,, 0,) = % < 5(0) (15)
VVi(x;,00), x, > 5,(0;).

To prove the first inequality we argue inductively that VV,(x, 0,) <0
for all x < S™ and any fixed vector o,. This statement implies that
the minimizer of V,(:, 0,) is greater than or equal to S". For t =T
function V;(y, o;) = G(y) is convex and reaches a minimum at 5".
Therefore, VV;(y, 0;) <0 for all y < S™ and for any fixed vector
or. Assume, by induction, that VV,,(x, 0,,;) <0 for all x <S™ and
for all o, ;. Then from equation (15), V], (x, 0,.;) <0 for all x < S™
and for any fixed vector o,,,. Equation (9) and the previous state-
ment imply that VV,(x, 0,) = {VG(x)+aEV],,,(x—D, ,— ¥ D, .~
Oi1, 111417 Oi)} < 0 for all o, and x < S™. This concludes the proof
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of the lower bound. Now, if we can show that for all y > S>5m,
Viy, 0,) > V,(S™, 0,) then we can claim that the global minimizer
of V,(-, 0,) is smaller than or equal to S. Notice that,

Vi(y, 0) =V, (S",0,)

v

G(y)— G(S") —aK
G(S)— G(S") — aK > 0.

v

The first inequality can be shown along the lines of Veinott (1966,
Lemma 1). The second inequality is due to the fact that function
G(-) increases with x for all x > S™. The last one is substantiated by
the definition of S. Thus, S,(0,) <S.

Recall that s,(0,) = max{y : H,(y, o,) <0}. Also for all y <s" < 5",

Vi(y,0)—Vi(5(0),0) = Vi(y,0,)—V,(S",0,),
since S,(0,) is a minimizer,
G(y)—G(S") > G(s")—G(S™)

K.

v

A%

We showed above that VJ],,(y,0) <0 for all y <S™ and any fixed
vector 0. Along with the definition of V,(:, 0,), see Equation (9),
this lemma implies the second inequality. This leads us to conclude
H,(y, 0,) <0 for all y <s™, which proves s,(0;) >s". O

ProoF oF LEMMA 4. For t =T, the first inequality of the lemma
is trivially satisfied. Assume by induction that this first inequality
is true for t = n. Recall that |,(x, 0) = V, (max(s,(0), x), 0). There are
four cases to consider.

Case 1. If x > max{s,(0),s,1(0)}, then J,_(x,0) — ], (x,0) =
Vn—l (x/ 0) - Vn(x/ 0) = 0.

Case 2. If x<min{s,(0),s,_,(0)}, then [ _,(x,0)— J,(x,0) =
Vo1 (Sut (0, 0) =V, (S,(0), 0) = V, (S,1(0), 0) =V, (S,(0), 0) = 0. The
first inequality above follows from the induction argument and the
second is due to the definition of S, (0).

Case 3. If s, ,(0) = x > 5,(0), then ], _,(x,0) —],(x,0) = K+
Vi1(8i0(0),0) = V,(x,0) =2 K+ V,(5,.1(0),0) = V,(x,0) = K +
V,(S,(0), 0)—V,(x, 0) > 0 since x > s,(0).

Case 4. If s,,(0) < x < s,(0), then ], _,(x,0) — J.(x,0) =
V,_1(x,0) — K—=V,(S,(0),0) = V,_1(x,0) — V,(x,0) > 0. The first
inequality above is due to x <s,(0).

Therefore, ], ;(x,0) > J,(x,0). Notice that by the definition of
V.1 (see Equation (9)), and the previous statement, V, ,(x,0) >
V,_1(x, 0). This concludes the induction argument. [

Proor oF LEMMA 5. The monotonicity of V, and ], follows from
standard arguments of dynamic programming with nonnegative
cost, namely that managing the system for one extra period cannot
be done at a lower cost. It is similar to the proof of Lemma 4. We
next prove the rest of the lemma using an induction argument. For
t =T we have VV;_;(x,0) > VV;(x, 0) due to the definition of V,
and the fact that J, is an increasing function. Assume by induction
that VV,_;(x, 0) > VV,(x, 0) for some t. We will first show that this
implies y,_;(0) < y,(0). Assume for a contradiction y,_,(0) > v,(0).
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Then we have

o
A

< VV,(y:(0), 0) < VV,(y,_1(0), 0)
VVo1(i-1(0), 0),
VV,(y1(0)—1,0) < 0=<VV,(y,.1(0)—1,0)

VYV, 1(Yi-1(0) =1, 0).

We show above that 0 < VV,_,(y,_,(0),0) and 0 < VV,_,(y,_4(0) —
1, 0). But, this contradicts the optimality of y,_;(0). We will now
establish that VJ,_;(x, 0) > VJ,(x, 0) holds for t. We consider three
cases: (i) for x <y,_,(0) the result holds because both sides of the
inequality are zero. Similarly, for x > y,(0) the result holds because it
reduces to VV,_;(x, 0) > VV,(x, 0). Finally, for y,_,(0) < x <y,(0) we
have VJ,(x, 0) =0 and we know that VJ,_;(x, 0) > 0 since J,(x, 0) is
increasing in x. Finally, since VV,(x, 0) = VG(x)+aEV], 1 (x,,1, O,1)
then VJ,_;(x,0) > VJ,(x,0) implies that VV, ,(x,0) > VV,_,(x,0)
completing the induction. O
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